- 金相显微镜
- MMAS-4 金相显微镜分析系统(倒置偏光)
- MMAS-5 金相显微镜分析系统(正置偏光)
- MMAS-6 金相显微镜分析系统(正置透反)
- MMAS-8 金相显微镜分析系统(正置透反)
- MMAS-9 金相显微镜分析系统(正置偏光)
- MMAS-12 金相显微镜分析系统(正置偏光)
- MMAS-15 金相显微镜分析系统(无限远)
- MMAS-16 金相显微镜分析系统(正置偏光)
- MMAS-17 金相显微镜分析系统(正置透反)
- MMAS-18 金相显微镜分析系统(无限远)
- MMAS-19 金相显微镜分析系统(微分干涉)
- MMAS-20 金相显微镜分析系统(倒置偏光)
- MMAS-21 集成电路金相显微镜分析系统
- MMAS-22 金相显微镜分析系统(明暗场)
- MMAS-23 金相显微镜分析系统(微分干涉)
- MMAS-24 金相显微镜分析系统(微分干涉)
- MMAS-25 金相显微镜分析系统(微分干涉)
- MMAS-26 金相显微镜分析系统(明暗场)
- MMAS-27 金相显微镜分析系统(明暗场)
- MMAS-28 金相显微镜分析系统(明暗场)
- MMAS-29 金相显微镜分析系统(微分干涉)
- MMAS-100 金相显微镜分析系统(正置)
- MMAS-200 金相显微镜分析系统(正置)
- 4XI 单目倒置金相显微镜
- 4XB 双目倒置金相显微镜
- 4XC 三目倒置金相显微镜
- 5XB 双目倒置偏光金相显微镜
- 6XB 正置三目金相显微镜
- 6XD 正置双目偏光金相显微镜
- 7XB 大平台集成电路检测金相显微镜
- 8XB 大平台明暗场芯片检查金相显微镜
- 9XB 正置无限远偏光金相显微镜
- 10XB 正置无限远明暗场偏光金相显微镜
- 11XB 研究级透反射偏光暗场金相显微镜
- 102XB 工业正置明暗场偏光金相显微镜
- 4XC-ST 三目倒置金相显微镜
- 5XB-PC 电脑型倒置偏光金相显微镜
- 6XB-PC 电脑型正置金相显微镜
- 6XD-PC 电脑型正置偏光金相显微镜
- 7XB-PC 电脑型集成电路检测金相显微镜
- 8XB-PC 电脑型芯片检查金相显微镜
- 9XB-PC 电脑型正置偏光金相显微镜
- 10XB-PC 电脑型正置明暗场金相显微镜
- 11XB-PC 电脑型研究级DIC金相显微镜
- 102XB-PC 电脑型正置明暗场金相显微镜
- AMM-8ST 三目倒置卧式金相显微镜
- AMM-17 透反射金相显微镜
- AMM-200 三目正置金相显微镜
- JC-10 读数显微镜
- BJ-X 便携式测量金相显微镜
- HMM-200 便携式测量金相显微镜
- HM-240 便携式金相显微镜
- HMM-240 便携式测量金相显微镜
- HMM-240S 便携式视频测量金相显微镜
- 体视显微镜
- SM-2C 定倍体视显微镜(上光源)
- SM-3C 定倍体视显微镜(双光源)
- SM-4L 连续变倍体视显微镜
- SM-5L 连续变倍体视显微镜(上光源)
- SM-6L 连续变倍体视显微镜(双光源)
- SM-7L 连续变倍体视显微镜(双光源)
- SM-8L 连续变倍体视显微镜(上光源)
- SM-9L 连续变倍体视显微镜
- SM-10L 连续变倍体视显微镜(双光源)
- SMAS-11 体视显微图像分析测量系统
- SMAS-12 体视显微图像分析测量系统(单)
- SMAS-13 体视显微图像分析测量系统(双)
- SMAS-14 体视显微图像分析测量系统(双)
- SMAS-15 体视显微图像分析测量系统(单)
- SMAS-16 体视显微图像分析测量系统
- SMAS-17 体视显微图像分析测量系统(双)
- SMAS-18 体视显微图像分析测量系统
- WPAS-19 焊接熔深立体显微分析系统
- PXS 定倍体视显微镜
- XYR 三目连续变倍体视显微镜
- XTZ-03 连续变倍体视显微镜
- XTZ-E 三目连续变倍体视显微镜
- 生物显微镜
- BID-100 倒置相衬生物显微镜
- BID-200 倒置相衬生物显微镜
- BID-300 倒置无限远生物显微镜
- BID-400 倒置偏光调制相衬生物显微镜
- BID-500 倒置透射相衬生物显微镜
- BID-600 倒置透射微分干涉相衬生物显微镜
- BI-10 单目生物显微镜
- BI-11 单目生物显微镜
- BI-12 单目生物显微镜
- BI-13 单目生物显微镜
- BI-14 双目生物显微镜(偏光)
- BI-15 双目生物显微镜(偏光)
- BI-16 生物显微镜(相衬、无限远、示教)
- BI-17 生物显微镜(相衬、无限远、示教)
- BI-18 生物显微镜(相衬、无限远、示教)
- BI-19 生物显微镜(相衬、无限远、示教)
- BI-20 生物显微镜(相衬、无限远、示教)
- BI-21 生物显微镜(相衬、无限远)
- BI-22 生物显微镜(相衬、无限远)
- BI-23 生物显微镜(相衬、无限远、暗场)
- BI-24 生物显微镜(相衬、无限远、暗场
- BI-25 生物显微镜(相衬、无限远)
- BIAS-100 倒置相衬生物显微分析系统
- BIAS-200 倒置相衬生物显微分析系统
- BIAS-300 倒置无限远生物显微分析系统
- BIAS-400 偏光调制相衬生物显微分析系统
- BIAS-500 倒置透射相衬生物显微分析系统
- BIAS-600 微分干涉生物显微分析系统
- BIAS-714 正置生物显微分析系统
- BIAS-715 正置生物显微分析系统
- BIAS-716 正置生物显微分析系统
- BIAS-717 正置生物显微分析系统
- BIAS-718 正置生物显微分析系统
- BIAS-719 正置生物显微分析系统
- BIAS-720 大行程正置生物显微分析系统
- BIAS-721 大行程正置生物显微分析系统
- BIAS-722 大行程正置生物显微分析系统
- BIAS-723 无限远光学生物显微分析系统
- BIAS-724 超大平台生物显微分析系统
- BIAS-725 无限远光学生物显微分析系统
- XSD-100 三目倒置生物显微镜
- 37XD 三目倒置生物显微镜
- XSP-8CA 三目正置生物显微镜
- 偏光显微镜/荧光显微镜
- PM-10 简易偏光显微镜
- PM-11 偏光显微镜(透、反射)
- PM-12 偏光显微镜(透射)
- PM-13 偏光显微镜(无限远)
- PM-14 偏光显微镜(无限远、反射)
- PBAS-20 偏光显微分析系统
- PBAS-21 偏光显微分析系统
- PBAS-22 偏光显微分析系统
- PBAS-23 偏光显微分析系统
- PBAS-24 偏光显微分析系统
- PBAS-25 偏光显微分析系统
- PBAS-26 偏光显微分析系统
- PBAS-27 偏光显微分析系统
- FM-100 荧光显微镜(倒置、四色)
- FM-200 荧光显微镜(无限远、四色)
- FM-300 荧光显微镜
- FM-400 荧光显微镜(无限远)
- FM-500 荧光显微镜(无限远)
- FM-600 荧光显微镜(无限远)
- FBAS-100 荧光显微分析系统
- FBAS-200 荧光显微分析系统
- FBAS-300 荧光显微分析系统
- FBAS-400 荧光显微分析系统
- FBAS-500 荧光显微分析系统
- FBAS-600 荧光显微分析系统
- 其它显微镜(工具/比较/进口)
- 19JC 数字式万能工具显微镜
- 19JPC 微机式万能工具显微镜
- 19JPC-V 影像式万能工具显微镜
- XZB-4C 比较显微镜
- XZB-8F 比较显微镜
- XZB-14 比较显微镜
- 进口显微镜
- 洛氏硬度计
- HR-150A 洛氏硬度计
- HR-150DT 电动洛氏硬度计
- HRS-150 数显洛氏硬度计
- HRS-150M 触摸屏洛氏硬度计
- HRZ-150 智能触摸屏洛氏硬度计
- HRZ-150S 智能触摸屏全洛氏硬度计
- ZHR-150S 电脑洛氏硬度计
- ZHR-150SS 电脑全洛氏硬度计
- ZXHR-150S 电脑塑料洛氏硬度计
- HRZ-45 智能触摸屏表面洛氏硬度计
- ZHR-45S 电脑表面洛氏硬度计
- HBRV-187.5 布洛维硬度计
- HBRVS-187.5 智能数显布洛维硬度计
- ZHBRVS-187.5 电脑布洛维硬度计
- 显微硬度计
- HV-1000 显微硬度计
- HV-1000Z 自动转塔显微硬度计
- HVS-1000 数显显微硬度计
- HVS-1000Z 数显自动转塔显微硬度计
- HVS-1000M 触摸屏显微硬度计
- HVS-1000MZ 触摸屏自动转塔显微硬度计
- HMAS-D 显微硬度计测量分析系统
- HMAS-DS 显微硬度计测量分析系统
- HMAS-DSZ 显微硬度计测量分析系统
- HMAS-DSM 显微硬度计测量分析系统
- HMAS-DSMZ 显微硬度计测量分析系统
- HMAS-CSZD 显微硬度计测量分析系统
- HMAS-CSZA 显微硬度计测量分析系统
- HMAS-ROLL 版辊显微硬度测量分析系统
- 维氏硬度计MC010系列
- HV5-50 维氏硬度计
- HV5-50Z 自动转塔维氏硬度计
- HVS5-50M 触摸屏维氏硬度计
- HVS5-50MZ 触摸屏自动转塔维氏硬度计
- FV 研究型维氏硬度计
- HMAS-D5 维氏硬度计测量分析系统
- HMAS-D5Z 维氏硬度计测量分析系统
- HMAS-D5SM 维氏硬度计测量分析系统
- HMAS-D5SMZ 维氏硬度计测量分析系统
- HMAS-C5SZA 维氏硬度计测量分析系统
- HMAS-HT 高温维氏硬度计测控系统
- HMAS-LT 超低温维氏硬度计测控系统
- HV-5 5公斤力维氏硬度计
- HV-10 10公斤力维氏硬度计
- HV-20 20公斤力维氏硬度计
- HV-30 30公斤力维氏硬度计
- HV-50 50公斤力维氏硬度计
- HVS-5 5公斤力数显维氏硬度计
- HVS-10 10公斤力数显维氏硬度计
- HVS-20 20公斤力数显维氏硬度计
- HVS-30 30公斤力数显维氏硬度计
- HVS-50 50公斤力数显维氏硬度计
- HV-5Z 5公斤力自动转塔维氏硬度计
- HV-10Z 10公斤力自动转塔维氏硬度计
- HV-20Z 20公斤力自动转塔维氏硬度计
- HV-30Z 30公斤力自动转塔维氏硬度计
- HV-50Z 50公斤力自动转塔维氏硬度计
- HVS-5Z 5公斤力数显转塔维氏硬度计
- HVS-10Z 10公斤力数显转塔维氏硬度计
- HVS-20Z 20公斤力数显转塔维氏硬度计
- HVS-30Z 30公斤力数显转塔维氏硬度计
- HVS-50Z 50公斤力数显转塔维氏硬度计
- 布氏硬度计MC010系列
- HB-2 锤击式布氏硬度计
- HBE-3000A 电子布氏硬度计
- HBE-3000C 数显布氏硬度计
- HBS-3000 数显布氏硬度计
- HBS-3000L 触摸屏布氏硬度计
- HMAS-DHB 布氏硬度计测量分析系统
- HMAS-DHBL 布氏硬度计测量分析系统
- HMAS-HB 便携式布氏硬度测量分析系统
- HBM-2017A 数显异形布氏硬度计
- 邵氏硬度计/巴氏硬度计MC010系列
- 934-1 巴氏硬度计
- LX-A/D/C 邵氏橡胶硬度计
- LXS-A/D/C 数显邵氏硬度计
- HLX-A/C 邵氏硬度计支架
- HLX-D 邵氏硬度计支架
- HLXS-A/C 数显邵氏硬度计支架
- HLXS-D 数显邵氏硬度计支架
- 进口硬度计
- MIC10 超声波硬度计
- MIC20 组合式超声波硬度计
- TIV 便携式光学硬度计
- TKM-459 超声波硬度计
- DynaMIC 回弹硬度监测仪
- DynaPOCKET 动态回弹硬度计
- 硬度计耗材/配件MC010系列
- 自准直仪/平面度检查仪MC030系列
- 1401(1X5) 双向自准直仪(6-10米)
- 1401-15/20 双向自准直仪(15-20米)
- S1401 数显双向自准直仪(6-10米)
- S1401-15 数显双向自准直仪(15-20米)
- YR-1S 数显自准直仪(30米,1秒)
- YR-0.1S 数显自准直仪(30米,0.1秒)
- YR1000U-3050 光电自准直仪(25/10米)
- YR25PC02 光电自准直仪(25米,0.2角秒)
- YR25TL02 光电自准直仪(25米,0.2角秒)
- YR25D10 电子自准直仪(25米,1.0角秒)
- YR20TL05 光电自准直仪(20米,0.5角秒)
- YR20W10 远程自准直仪(20米,1.0角秒)
- YR10PC01 光电自准直仪(10米,0.1角秒)
- YR10TL01 光电自准直仪(10米,0.1角秒)
- YR2038 电子自准直仪(10米,1角秒)
- YR10TL03 光电自准直仪(10米,0.3角秒)
- YR10W06 远程自准直仪(10米,0.6角秒)
- YR05TL02 光电自准直仪(5米,0.2角秒)
- YR04TL001 光电自准直仪(4米,0.01角秒)
- YR05GMS 电子比较测角仪
- YR0515GMM 小型电子比较测角仪
- YROP10 电子式光学平行差测量仪
- YR8-36 金属多面棱体
- YR140-205 多齿分度台
- YR-001D 自准直仪多轴位移工作台
- YR-01X 自准直仪旋转位移工作台
- YR-SL 自准直仪升降工作台
- YR-5L 自准直仪光学五棱镜
- 金相切割机MC004系列
- QG-1 金相试样切割机
- Q-2 金相试样切割机
- QG-2 岩相切割机
- Q-3A 金相试样切割机
- Q-4A 金相试样切割机
- QG-5A 金相试样切割机
- QG-100 金相试样切割机
- QG-100Z 自动金相试样切割机
- QG-300 三轴金相试样切割机
- ZQ-40 无级双室自动金相试样切割机
- ZQ-50 自动精密金相试样切割机
- ZQ-100/A/C 自动金相试样切割机
- ZQ-150F 无级三轴自动金相试样切割机
- ZQ-200/A 无级三轴金相试样切割机
- ZQ-300F 无级三轴自动金相试样切割机
- ZQ-300Z 自动金相试样切割机
- QG-500 大型液压伺服金相试样切割机
- ZY-100 导轨金相试样切割机
- SYJ-150 低速金刚石切割机
- SYJ-160 低速金刚石切割机
- 金相磨抛机MC004系列
- MPD-1 金相试样磨抛机(单盘无级)
- MPD-2 金相试样磨抛机(双盘四档单控)
- MP-3A 金相试样磨抛机(三盘三控无级)
- MP-2A 金相试样磨抛机(双盘双控无级)
- MPD-2A 金相试样磨抛机(双盘双控无级)
- MPD-2W 金相试样磨抛机(双盘单控无级)
- ZMP-1000 金相试样磨抛机(单盘8试样智能)
- ZMP-2000 金相试样磨抛机(双盘8试样智能)
- ZMP-3000 金相试样磨抛机(智能闭环系统)
- ZMP-1000ZS 智能薄片自动磨抛机
- BMP-1 半自动金相试样磨抛机
- BMP-2 半自动金相试样磨抛机
- MY-1 光谱砂带磨样机
- MY-2A 双盘砂带磨样机
- MPJ-35 柜式金相试样磨平机
- P-1 单盘台式金相试样抛光机
- P-2 双盘台式金相试样抛光机
- LP-2 双盘立式金相试样抛光机
- PG-2A 双盘柜式金相试样抛光机
- P-2T 双盘台式金相试样抛光机
- PG-2C 双盘立式金相试样抛光机
- P-2A 双盘柜式金相试样抛光机
- YM-1 单盘台式金相试样预磨机
- YM-2 双盘台式金相试样预磨机
- YM-2A 双盘台式金相试样预磨机
- 研磨抛光敷料
- 进口研磨抛光机
- 金相镶嵌机MC004系列
- XQ-2B 金相试样镶嵌机(手动)
- ZXQ-2 金相试样镶嵌机(自动)
- AXQ-5 金相试样镶嵌机(自动)
- AXQ-50 金相试样镶嵌机(智能,一体机)
- AXQ-100金相试样镶嵌机(智能,一体机,双室)
- 冷镶嵌
- 进口液压热镶嵌机
- 进口液压热镶嵌机
- 进口液压自动热镶嵌机(可矩形)
- 进口立式热镶嵌系统
- 清洁度检测分析系统
- 材料气泡测量分析系统
- 电子万能试验机MC009系列
- YRST-D 数显电子拉力试验机(1-5KN)
- YRST-M 数显电子拉力试验机(10、20KN)
- YRST-M50 数显电子拉力试验机(50KN)
- YRWT-D 微机控制电子万能试验机(1-5KN)
- YRWT-M 微机电子万能试验机(10、20KN)
- YRWT-M50 微机控制电子万能试验机(50KN)
- YRWT-M100 微机电子万能试验机(100KN)
- YRWT-M200 微机电子万能试验机(200KN)
- LDW-5 微机电子拉力试验机(0.05-5吨)
- WDS01-2D 数显电子万能试验机(0.1-2吨)
- WDS10-100 数显电子万能试验机(1-10吨)
- WDS10-300L 数显电子万能试验机(1-30吨)
- WDW10-100 微机电子万能试验机(1-10吨)
- WDW200-300 电子万能试验机(20-30吨)
- AGS-X25 岛津电子万能试验机(2-5吨)
- AGS-X13 岛津电子万能试验机(10-30吨)
- 5942 Instron电子万能材料试验机(2mN-2kN)
- 5940 Instron电子万能材料试验机(0.5-2kN)
- 3300 Instron电子万能材料试验机(0.5-5kN)
- 5980 Instron电子万能材料试验机(10-60kN)
- 5960 Instron电子万能材料试验机(5-50kN)
- 3360 Instron电子万能材料试验机(5-50kN)
- 3380 Instron电子万能材料试验机(100kN)
- ZWIK250 Zwick万能材料试验机(5-250kN)
- ZWIK5 Zwick万能材料试验机(0.5-5kN)
- 液压万能试验机MC009系列
- WES100-300B 数显液压万能试验机
- WES600-1000D 数显液压万能试验机
- WEW300-600B 电脑液压万能试验机
- WEW600-1000D 电脑液压万能试验机
- WAW100-1000B 电液伺服万能试验机
- WAW600-1000D 电液伺服万能试验机
- WES-100B 10吨数显液压式万能试验机
- WES-300B 30吨数显液压式万能试验机
- WES-600B 60吨数显液压式万能试验机
- WES-600D 60吨数显液压式万能试验机
- WES-1000D 100吨数显液压式万能试验机
- WEW-100B 微机屏显液压式万能试验机
- WEW-300B 微机屏显液压式万能试验机
- WEW-600B 微机屏显液压式万能试验机
- WEW-1000B 微机屏显液压式万能试验机
- WEW-600D 微机屏显液压式万能试验机
- WEW-1000D 微机屏显液压式万能试验机
- WAW-100B 微机控制电液伺服万能试验机
- WAW-300B 微机控制电液伺服万能试验机
- WAW-600B 微机控制电液伺服万能试验机
- WAW-1000B 微机控制电液伺服万能试验机
- WAW-600D 微机控制电液伺服万能试验机
- WAW-1000D 微机控制电液伺服万能试验机
- 冲击试验机MC009系列
- YR-1530 手动冲击试验机(300J)
- YR-B 半自动冲击试验机(300、500J)
- YRS-B 数显半自动冲击试验机(300、500J)
- YRW-B 微机半自动冲击试验机(300、500J)
- YR-Z 全自动冲击试验机(300、500J)
- YRS-Z 数显全自动冲击试验机(300、500J)
- YRW-Z 微机全自动冲击试验机(300、500J)
- CDW-40 冲击试验低温槽
- CDW-60 冲击试验低温槽
- CDW-80 冲击试验低温槽
- CSL-A 冲击试样缺口手动拉床
- CSL-B 冲击试样缺口电动拉床
- JB-300B/500B 半自动冲击试验机
- JBS-300B/500B 数显半自动冲击试验机
- JBS-300Z/500Z 数显自动冲击试验机
- JBW-300B/500B 电脑型冲击试验机
- JBW-300Z/500Z 电脑自动冲击试验机
- CST-50 冲击试样缺口投影仪
- CSL-1 冲击试样缺口手动拉床
- CZL-Y 冲击试样缺口液压拉床
- 光谱仪
- 元素分析仪/碳硫分析仪
- 色谱仪
- 光度计
- 影像测量仪
- 投影仪
- 三坐标测量机
- 轮廓仪
- 圆度仪
- 探伤仪
- 粗糙度仪
- 测高仪
- 测厚仪
- 测温仪
- 测振仪
- 石油化工仪器
- 气体检测仪
- 食品仪器
- 人工智能设备
- 4008127833/021-58391850
- 扫一扫关注我们
|
|
|
内部线理不好 怎么整出高大上的仪表机柜间 |
本站文字和内容版权为上海研润光学显微镜硬度计制造厂所有http://www.yrmade.com;转载请注明出处 |
随着布线水平的提高,布线系统的工程商已经通过施工工艺及层层把关,有把握达到每根线都能够通过国家标准所要求的99%的性能测试合格率。这时,人们的注意力就转向了美观。由于机柜型配线架已经成为机房配线架的主体,理线将主要涉及机柜型配线架的美观。当线缆进入机房后,会沿着桥架进入机柜配线架或壁挂配线架。理线是指在机房的进线孔至配线架的模块孔之间,将线缆理整齐。机柜内的水平双绞线位于机柜的后侧。过去,这些双绞线不进行整理,或进行简单的绑扎后立即上配线架,那时,从机柜的背后看去,水平双绞线就象瀑布一样垂荡在那里,或由数根尼龙扎带随意绑扎在机柜的两侧。大家关心的重点是每根双绞线的性能测试合格。随着布线水平的提高,布线系统的工程商已经通过施工工艺及层层把关,有把握达到每根线都能够通过国家标准所要求的99%的性能测试合格率。这时,人们的注意力就转向了美观。根据国标,垂直桥架内的线缆每隔1.5米应绑扎一次(防止线缆应重量产生拉力造成线缆变形),对水平桥架内并没有要求。而终端面板、机柜、配线架、配线箱按照标准必须做到两底角平行,因此布线系统的美观就主要集中在机房内的线缆部分。机房内的线缆往往会进入机柜配线架或壁挂配线架。因机柜配线架已经成为布线工程中的主流,在此将主要涉及机柜型配线架的理线工艺。在机柜正面,生产厂商已经制造出了各种造型的配线架、跳线管理器等部件,其正面的美观已经不成问题。而机柜后侧的美观,往往不为人们所注意,造成工程完工后施工方(甚至是业主方)不敢让人参观机柜的内部。在机房内,应当做到每根线从进入机房开始,直到配线架的模块为止,都应做到横平竖直不交叉。并按电子设备排线的要求,做到每个弯角处都有线缆固定,保证线缆在弯角处有一定的转弯半径,同时做到横平竖直。上述要求同样适用于机柜后侧。既然水平双绞线布置成瀑布型已经不再理想,因此对机柜内的水平双绞线就应该进行理线。理线这一名词已经在许多施工人员口中听到,但其含意却各不一样,其原因在于理线的工艺手法不一样。1 、三种理线工艺简介为了做到线缆美观,笔者看到过三种理线效果:瀑布造型理线这是一种比较古老的布线造型,有时还能看到其踪影。它采用了“花果山水帘洞”的艺术形象,从配线架的模块上直接将双绞线垂荡下来,分布整齐时有一种很漂亮的层次感(每层24-48根双绞线)。在现在,仍能见到有些配线机柜后侧采用瀑布型理线工艺,即线缆不做任何绑扎,直接从配线面板后侧荡至地面。这样做的优点是节省人工、减少线间干扰(串扰)。瀑布型理线工艺是最常见的理线方法,它使用尼龙束带将线缆绑扎在机柜内侧的立柱、横梁上,不考虑美观,仅保证中间的空间可以腾出来给网络设备使用。这种造型的优点是节省理线人工,缺点则比较多,例如:1)安装网络设备时容易破坏造型,甚至出现不易将网络设备安装到位的现象;2)每根双绞线的重量全部变成拉力,作用在模块的后侧。如果在端接点之前没有对双绞线进行绑扎,那么这一拉力有可能会在数月、数年后将模块与双绞线分离,引起断线故障;3)万一在该配线架中某一个模块需要重新端接,那维护人员只能探入“水帘”内进行施工,有时会身披数十根双绞线,而且因机柜内普遍没有内设光源,造成端接时不容易看清楚,致使端接错误的概率上升。逆向理线也称为反向理线。逆向理线是在配线架的模块端接完毕后,并通过测试后,再进行理线。其方法是从模块开始向机柜外理线,同时桥架内也进行理线。这样做的优点是理线在测试后,不会因某根双绞线测试通不过而造成重新理线,而缺点是由于两端(进线口和配线架)已经固定,在机房内的某一处必然会出现大量的乱线(一般在机柜的底部)。逆向理线一般为人工理线,凭借肉眼和双手完成理线。由于机柜内有大量的电缆,在穿线时彼此交叉、缠绕,因此这一方法的耗时很多、工作效率无法提高。逆向理线的优点是测试已经完成,不必担心机柜后侧的线缆长度。而缺点是因为线缆的两端已经固定,线缆之间会产生大量的交叉,要想理整齐十分费力,而且在两个固定端之间必然有一处的双绞线是散乱的,这一处往往在地板下(下进线时)或天花上(上进线时)。正向理线正向理线也称前馈型理线。正向理线是在配线架端接前进行理线。它往往从机房的进线口开始(如果是从机柜到机柜之间的双绞线理线,则是从其中某一机柜内的配线架开始进行理线),将线缆逐段整理,直到配线架的模块后端为止。在理线后再进行端接和测试。正向理线所要达到的目标是:自机房(或机房网络区)的进线口至配线机柜的水平双绞线以每个16/24/32/48口配线架为单位,形成一束束的水平双绞线线束,每束线内所有的双绞线全部平行(在短距离内的双绞线平行所产生的线间串扰不会影响总体性能,因为桥架和电线管中铺设着每根双绞线的大部分,这部分是散放的,是不平行的),各线束之间全部平行;在机柜内每束双绞线顺势弯曲后铺设到各配线架的后侧,整个过程仍然保持线束内双绞线全程平行。在每个模块后侧从线束底部将该模块所对应的双绞线抽出,核对无误后固定在模块后的托线架上或穿入配线架的模块孔内。正向理线的优点是可以保证机房内线缆在每点都整齐,且不会出现线缆交叉。而缺点是如果线缆本身在穿线时已经损坏,则测试通不过会造成重新理线。因此,正向理线的前提是对线缆和穿线的质量有足够的把握。2、正向理线所要达到的目标正向理线可以在机房(主机房的网络区或弱电间)中自进线口至配线架之间全部整齐、平行,十分美观。缺点是施工人员要对自己的施工质量有着充分的把握,只有在基本上不会重新端接的基础上才能进行正向理线施工。在本文中基于目前的布线工程公司已经能够把握工程质量的现实,推荐采用正向理线工艺。正向理线的目标是同时具有5大效果:1)配线架预留:配线架背后双绞线预留2)提高可靠性:提高模块端接后的长期可靠性3)机房内美观:做到机房内、机柜内任意一处都允许外人拍照4)施工快捷:耗费1.5人,在30分钟内完成24口配线架的理线5)机柜内单侧进线:从机柜内的一侧进线,另一侧留给电源、光缆和跳线这5大效果对于综合布线工程而言有着非常大的意义,详述如下:配线架后侧预留双绞线在早期的布线工程中,机柜式配线架上的模块端接时,施工人员往往是站在机柜内进行施工,由于机柜内的空间狭小,致使施工人员难以展开,导致施工速度和施工质量下降。现在的布线工程中,施工人员大多在机柜正面进行配线架上的模块端接,他们象面板上的模块端接一样,先端接模块,然后将模块插入配线架中。这就要求模块后的双绞线长度应该留得比较长,如果考虑到模块在今后维护时也会从正面取出,并进行测试和检查,就有必要将这些预留的双绞线保留在配线架后的托架上。配线架后侧的托架上预留双绞线的另一个目的是为测试不合格的模块保留再次端接的机会。做过施工的人都知道,在工程自测试工程中,模块端接出错和测试不合格的现象时有发生,在对模块进行重新端接后这些问题基本上都能够解决。但模块重新端接前需要将已经打过线的双绞线线头剪去,利用新的线头重新端接,这同样也需要一小段双绞线。基于以上两种原因,在配线架的托架上预留一些双绞线是最为理想的做法。提高可靠性早期的模块包装袋中往往有一个100mm长度的尼龙扎带,在模块设计时也会在模块的尾部保留绑扎双绞线的托板。可能是用于成本的原因,现在的非屏蔽模块中大多已经取消了托板和尼龙扎带,而屏蔽模块则仍然保留了绑扎托板和尼龙扎带(用于将双绞线的屏蔽层固定在模块的屏蔽壳体上)。模块上的双绞线绑扎托板可以起到固定双绞线,使双绞线所受到的外部拉力不会传导到模块端接端的作用,它可以大大提高模块端接的长期可靠性。在取消了绑扎托板后,就有必要考虑在施工工艺中让双绞线为模块的端接点施加压力,而不是施加拉力。因为施加拉力的结果可能会导致若干年后模块的端接点松动甚至双绞线脱落,造成断线故障。如果能在模块背后的双绞线固定方式上做文章(如:将双绞线弯曲成弧线形或圆环形等等),使双绞线对模块形成微小的压力,这样就可以达到提高长期可靠性的作用。机房内美观机房美观是施工各方都希望做到的效果,但怎样找到快速而又美观的方法却一直是一个困难的事。理线工艺的目标是:能够做到在机房内和机柜内的任意一处都允许外人拍照。施工快捷机柜内不可能不理线,无论使用哪一种理线方法都会消耗一些人工,只是多与少而已。正向理线由于线缆的一端是可以自由活动的,因此理线速度比较快。根据测算,如果从桥架入口处到机柜之间的距离为9米、机柜高度为2米,24口配线架理线时所耗费的人工为1.5人(1个人全程理线,另1个人在开始时将双绞线穿入理线板时帮助送线,在双绞线从配线架模块孔穿出时负责接线并检查线号是否与标签框内预设的线号一直),那么一束(24根)线缆的理线(从吊顶经架空地板至机柜内的配线架出口处,全长约9米。未计入寻找线号的时间)所耗费为30分钟,因此每个机柜(200根线)的理线仅需半天就可以完成。这个时间远远少于逆向理线所需的时间,比瀑布型和简单理线所需的时间略长,属于工程中可以接受的范围。机柜内单侧进线大多数综合布线机柜内的双绞线敷设方法为两侧走线,其目的是减少均匀分布。而其缺点是电源插座(或PDU)只能横向固定在两根后立柱中间(可能与双绞线之间的间距小于标准而导致对双绞线会产生的电磁干扰),或者是安装在没有走线的地方。其实,在机柜内除了水平双绞线之外,还有电源插座(PDU)、光缆、大对数电缆,如果要在机柜之间进行长跳线互连,则长跳线也可能会占据机柜后侧的某一边。机柜内的所有双绞线最好是沿一侧(一般是右侧)走线,从机柜的底部上升到配线架高度后横向转弯,延伸到配线架的托线架上。而另一侧则以电源插座以及不强电干扰不敏感的、光缆和大对数双绞线电缆,也可以用于敷设长跳线。这5大效果达到后,从机房双绞线入口处到配线架模块端的所有双绞线已经全部整理整齐,也可以达到从一个机柜到另一个机柜之间的双绞线整理整齐,并在配线架上留有为测试失败时需要重新端接所需的预留双绞线。3、正向理线对布线材料的要求正向理线的作用之一是在配线架后侧预留双绞线,为了减少双绞线因弯曲半径所造成的性能损耗,预留双绞线的弯曲半径必须大于双绞线外径(缆径)的4倍(根据TIA 568C-2009,屏蔽双绞线的弯曲半径也是4倍,而不是过去所说的8倍)。而每个1U配线架的高度仅为44mm,所以得利用配线架与跳线管理器的合并高度确保双绞线的弯曲半径在合理的范围内。根据这一计算,可以确定对正向理线的材料要求:1个配线架配备1个跳线管理器。如果使用2个配线架共享1个跳线管理器,那么理线工艺应该进行比较大的调整,而且可能会造成的结果是美观特性下降。在此,将以1个配线架配备1个跳线管理器的配置方法,介绍正向理线工艺。4、正向理线所需要的工具正向理线所需工具十分简单,均为常用工具,其中的自制工具可以在工地上就地取材,自行制作。工具清单如下:5、理线板制作方法理线板是正向理线的必备工具,并使用相应的理线表配合理线。理线板可以采用橡胶板、纤维板、层压板或木板在现场自制,也可以在公司里制作后使用。理线板的制作方法十分简单:测量所用双绞线的缆径,并附加2-4mm后形成理线板的孔径,然后根据板的强度选择孔与孔之间的间距,在板上横向划5根线、纵向划5根线后留有写编号的空间后确定板的长宽尺寸。剪切或锯下多余部分后,使用手枪钻在划线的交叉点上以所确定的孔径钻25个孔后,用粗砂纸将所有的边沿倒角后,在横向写上(或刻上)1-5的编号,在纵向写上(或刻上)A-E的编号后大功告成。理线板是一块25孔方板(对应于24口配线架的合适尺寸5×5孔理线板,也可以选用4×6、8×8等规格),单面写字,每孔可以穿1根水平双绞线。可以想象:当双绞线穿入理线板后,彼此之间的相对位置就基本固定,根据其位置进行绑扎时不容易出现大的错位现象,更不易出现线缆的交叉现象。6、常见的理线表理线板需使用相应的理线表配合理线。理线表是一张人为定义的表格,当使用24口配线架2可以使用5×5理线板,该理线表为5行5列的表格,每个单元格对应一个孔。理线表的填写方法可以有多种,每种填写方法对应于一种排列顺序。在下图中介绍了其中一种排列顺序(孔内数字代表配线架上的模块编号),它的特点是在配线架背后的每根线全部水平平行排列。在实际填写理线表时,应将与配线架1-24口对应的线缆线号填入理线表,这样线号与配线架的模块号就一一对应。在一般情况下,当配线架布置图完成后,可使用EXCEL的联动功能,自动形成针对每个配线架的理线表。理线表的构成可以根据机柜配线架的进线方向和出线方法双重确定:(1)右进上出理线表这种理线表的排列参见下图。它的特点是从机柜后侧向前看,双绞线从配线架的右侧进入配线架背后的托线架上,整束双绞线从上方开始出现,1号线进入最右侧的第1个模块孔,依次类推,最后24号线进入最左侧的模块孔。特点:整束线底面与托线架完全平行。(2)右进下出理线表这种理线表的排列参见下图。它的特点是从机柜后侧向前看,双绞线从配线架的右侧进入配线架背后的托线架上,整束双绞线从下方开始出现,1号线进入最右侧的第1个模块孔,依次类推,最后24号线进入最左侧的模块孔。特点:整束线的上平面保持完整的斜线平行,覆盖着下面所有的双绞线,双绞线进入模块时几乎看不见。(3)左进上出理线表这种理线表的排列参见下图。它的特点是从机柜后侧向前看,双绞线从配线架的左侧进入配线架背后的托线架上,整束双绞线从上方开始出现,24号线进入最左侧的第1个模块孔,依次类推,最后1号线进入最右侧的模块孔。特点:整束线底面与托线架完全平行。(4)左进下出理线表这种理线表的排列参见下图。它的特点是从机柜后侧向前看,双绞线从配线架的左侧进入配线架背后的托线架上,整束双绞线从下方开始出现,24号线进入最左侧的第1个模块孔,依次类推,最后1号线进入最右侧的模块孔。特点:整束线的上平面保持完整的斜线平行,覆盖着下面所有的双绞线,双绞线进入模块时几乎看不见。仔细观察这四张表可以看出:1、4表的排列完全一样,2、3表的排列完全一样,所以合并后形成了A、B两张表。其中A表用于右进上出、左进下出,B表用于右进下出、左进上出。7、正向理线工艺在正向理线过程中,需要布线材料的配合,并使用理线板和理线表,配合着理线工艺才能完成一个同时具有美观、可靠、快捷、预留的效果。下面以最常见的右进上出理线方式介绍正向理线的基本施工工艺:(1) 将配线架固定到位,背后装好托架,正面将打印了线号的面板纸装入配线架(或贴在配线架上),若配线架的模块可以卸下,则应卸下模块;(2)理线板定位:理线板在穿线前先应确定其方向,使理线板在理线过程中不需要硬行扭转方向,就可以使E1孔就近自然对准1号模块,此时理线板上的2-5孔与配线架的2-5号保持平行。通常可以使用这样的方法进行定位:先将理线板垂直放在1号模块背后,使E1孔对着1号模块(有字的一面朝向24号模块),然后手持理线板顺着线缆未来的路由走向,向机房的进线口移动,移动时确保理线板只出现平行移动,不发生转动,当理线板到达进线口时,记下理线板的方位(主要是A1孔位置所在的方位),以便后续每块理线板使用;(3)理线板穿线:在机房的进线口旁,将理线板按2所确定的方位将板的方向调整好,将水平双绞线按线号依理线表穿入理线板(有字的一面对着自己,线从无字的一面穿入板中),这道工序一般由两人共同完成:一人找到线号(只要找到该理线板所需的线号即可)并将其与其他线缆分离,一人将线穿入理线板的对应孔中。应该注意的是,双绞线应全部穿过理线板,也就是应该将理线板紧贴在进线口旁,这样才能保证进入机房的双绞线全部被整理;(4)路由理线:先在理线板外侧(无字侧)根部用魔术贴(或尼龙扎带)将穿入理线板的双绞线扎成一束;然后将理线板沿着指定的路由向自己方向平移,平移100mm后在理线板外侧根部用魔术贴(或尼龙扎带)再绑扎一次(防止前次绑扎松动),此时应注意使线束形成圆形,而线束外侧的线应该是理线板外围一圈的线,理线板中间的线在线束的内部,确定后的所有双绞线的相对平行一直要保持到配线架的最远端的模块后侧(即第24个模块后侧);继续平移理线板200mm左右,在理线板外侧根部用魔术贴(或尼龙扎带)绑扎,注意每根线应保持与前次绑扎时的位置相同,不允许有些线从外层转入内层,也不允许内层线转入外层;依次平移,直到配线架为止;(5)线束固定:在理线过程中,如果旁边遇到桥架上的扎线孔或机柜内的扎线板,则应在绑扎线束的同时将线束绑扎在桥架或机柜上,以免线束下滑;(6)弯角理线:当平移过程中遇到转弯时,必须让理线板贴近转弯角,在弯角旁顺着转弯,不可以绑扎后再贴上弯角(由于弯角处内侧的线短,外侧的线长,因此如果按直线绑扎后再转弯,弯角处的线束一定会变形)。这就要求所有的线束必须在现场绑扎,不可以事先绑扎后后再移到现场来;(7)托架理线:当理线板到达配线架背后的托架上后,先将线束绑扎在托架上,然后向前平移,每到达一个模块前时,将线束绑扎一次,然后分出该模块对应的线号。此工序应配备2人:1人分线,1人将线从配线架背后拉到配线架正面去(如果模块可以卸下,则将线从模块孔穿到正面去),同时2人唱号核对线号与配线架上的面板编号是否一致;(8)将退出的理线板重新拿到进线口,使用下一个24口配线架的理线表,依次重复1-8,完成下一束线的理线工作,直到全部完成。多束线理线(分支理线)当机柜内有多个配线架时,每个配线架的线束应分别理线。但由于机柜内的扎线板宽度有限(一般宽度为100mm),只能并排绑扎3~4束24根的线束,而深度为800mm的机柜内右侧最多能放2根扎线板(机柜内的水平双绞线应从单侧绑扎,以免影响美观),即可能达不到绑扎200根水平双绞线的目标。这时可以使用二次理线方式,先使用8×8理线板扎出48根的线束(6×8),到一定高度后再添1块5×5理线板将该线束分为2束后,继续理线至配线架。正向理线的起点可以是机柜的线缆入口处、桥架处口处、机房入口处,甚至可以是从工作区面板开始理线(不推荐)。8、两机柜之间的理线在信息机房内,时常会出现两个机柜之间敷设有一束双绞线的要求,这时如果在两个配线架上使用相同的配线架进线及出现规则,就可能会出现线束扭转的现象。要解决这个问题,两个机柜应分别选用不同的理线表。以下以左侧机柜(A配线架)向右侧机柜(B配线架)敷设双绞线(右进上出)为例,分A、B、C、D四种情况进行分析(图中使用蓝、橙、绿、棕、灰五种颜色分别标明最上层、次上层、中层、次下层和最下层):A. 右侧机柜配线架与左侧机柜配线架同方向,且均为右侧进线(右进上出)根据图示,在A配线架上双绞线的排列为1号线最先出现,其他线按顺序出线,排列整齐;在B配线架上仍然是1号线先出线,但因它排列在B配线架线束中4号线的位置,所以每层线在出线时会有交叉,由于五层线的交叉位置完全一致,所以在B配线架上不会影响美观。B. 右侧机柜配线架与左侧机柜配线架同方向,右侧机柜为左侧进线(左进上出)根据图示,在A配线架上双绞线的排列为1号线最先出现,其他线按顺序出线,排列整齐;在B配线架上为24号线先出线,改为了下出线方式,由于最上层的线全部覆盖在所有的线上,保持了一层完全平整的斜线,所以在B配线架上依旧美观。C. 右侧机柜配线架与左侧机柜配线架反方向,且均为右侧进线(右进上出)根据图示,在A配线架上双绞线的排列为1号线最先出现,其他线按顺序出线,排列整齐;在B配线架上仍然是1号线先出线,但因它排列在B配线架线束中4号线的位置,所以每层线在出线时会有交叉,由于五层线的交叉位置完全一致,所以在B配线架上不会影响美观。D. 右侧机柜配线架与左侧机柜配线架反方向,右侧机柜为左侧进线(左进上出)根据图示,在A配线架上双绞线的排列为1号线最先出现,其他线按顺序出线,排列整齐;在B配线架上为24号线先出线,改为了下出线方式,由于最上层的线全部覆盖在所有的线上,保持了一层完全平整的斜线,所以在B配线架上依旧美观。由上述这四种机柜配线架摆放方法和进线方向的理线方式组合,利用类推出其他组合的理线方式。采用这样的方法,可以确保整束双绞线不会在敷设过程中翻转,仅需要改变第2个配线架的出线方式就可以解决问题。9、其它理线方法有些公司使用理线梳进行正向理线,这个工具可以避免向理线板穿线这一费时的工序,但理线梳也有缺点。例如:在理线过程中双绞线容易从梳子中逃出;如果理线不能立即完成,数天后理线梳中的线可能已经自行脱离,这时就必须重新将线排入梳中。现在,有些布线厂商已经推出了专用的理线器材,但从照片看仿佛需要占用额外的机柜/桥架空间,这也许对于减小线间干扰有益,但同时要求机柜/桥架具有更大的空间。这一点对于每个机柜中需要容纳数百根双绞线时,是需要在施工前有所考虑的。
|
合作站点:http://www.am17.net/
合作站点:http://www.am17.cn/
合作站点:http://www.yr1718.com.cn/
合作站点:http://www.cnnoet.net/
研润金相显微镜列表:
4XB 双目倒置金相显微镜---
4XC-ST 三目倒置金相显微镜---
AMM-8ST 三目倒置卧式金相显微镜---
AMM-17 透反射金相显微镜---
AMM-200 三目正置金相显微镜---
MMAS-4 金相显微测量分析系统---
MMAS-8 金相显微测量分析系统---
MMAS-5 金相显微测量分析系统---
MMAS-6 金相显微测量分析系统---
MMAS-9 金相显微测量分析系统---
MMAS-12 金相显微测量分析系统---
MMAS-15 金相显微测量分析系统---
MMAS-16 金相显微测量分析系统---
MMAS-17 金相显微测量分析系统---
MMAS-18 金相显微测量分析系统---
MMAS-19 金相显微测量分析系统---
MMAS-20 金相显微测量分析系统---
MMAS-100 金相显微测量分析系统---
MMAS-200 金相显微测量分析系统
研润硬度计列表:
HR-150A 洛氏硬度计---
HR-150DT 电动洛氏硬度计---
HRS-150 数显洛氏硬度计---
HRS-150M 触摸屏洛氏硬度计
HRZ-150 智能触摸屏洛氏硬度计---
HRZ-150S 智能触摸屏全洛氏硬度计---
ZHR-150S 电脑洛氏硬度计---
ZHR-150SS 电脑全洛氏硬度计
ZXHR-150S 电脑塑料洛氏硬度计---
HRZ-45 智能触摸屏表面洛氏硬度计---
ZHR-45S 电脑表面洛氏硬度计---
HBRV-187.5 布洛维硬度计
HBRVS-187.5 智能数显布洛维硬度计---
ZHBRVS-187.5 电脑布洛维硬度计---
HV-1000 显微硬度计---
HV-1000Z 自动转塔显微硬度计
HVS-1000 数显显微硬度计---
HVS-1000Z 数显转塔显微硬度计---
HVS-1000M 数显显微硬度计---
HVS-1000MZ 数显转塔显微硬度计
HMAS-D 显微硬度测量分析系统---
HMAS-DS 显微硬度测量系统---
HMAS-DSZ 显微硬度分析系统---
HMAS-DSM 显微硬度测量分析系统
HMAS-DSMZ 显微硬度分析系统---
HMAS-CSZD 显微硬度测量系统---
HMAS-CSZA 显微硬度计测量分析系统---
HV5-50 维氏硬度计
HV5-50Z 自动转塔维氏硬度计---
HVS5-50M 触摸屏维氏硬度计---
HVS5-50MZ 触摸屏自动转塔维氏硬度计---
FV 研究型维氏硬度计
HMAS-D5 维氏硬度分析系统---
HMAS-D5Z 维氏硬度测量系统---
HMAS-D5SM 维氏硬度分析系统---
HMAS-D5SMZ 维氏硬度测量系统
HMAS-C5SZA 维氏硬度计测量分析系统---
HB-2 锤击式布氏硬度计---
HBE-3000A 电子布氏硬度计---
HBE-3000C 数显布氏硬度计
HBS-3000 数显布氏硬度计---
HBS-3000L 触摸屏布氏硬度计---
HMAS-DHB 布氏硬度测量系统---
HMAS-DHBL 布氏硬度计测量分析系统
HMAS-HB 便携式布氏硬度测量分析系统---
HBM-2017A 数显异形布氏硬度计
研润自准直仪产品列表:
1401双向自准直仪---
1401-15/20 双向自准直仪(15-20米)---
S1401 数显双向自准直仪(6-10米)---
S1401-15 数显双向自准直仪(15-20米)
研润金相试样切割机产品列表:
QG-1 金相试样切割机---
Q-2 金相试样切割机---
QG-2 岩相切割机---
Q-3A 金相试样切割机---
Q-4A 金相试样切割机
QG-5A 金相试样切割机---
QG-100 金相试样切割机---
QG-100Z 自动金相试样切割机---
QG-300 三轴金相试样切割机
ZQ-40 无级双室自动金相切割机---
ZQ-50 自动金相切割机---
ZQ-100/A/C 自动金相试样切割机---
ZQ-150F 无级三轴自动金相试样切割机
ZQ-200/A 三轴金相切割机---
ZQ-300F 三轴自动金相切割机---
ZQ-300Z 金相切割机---
QG-500 伺服金相切割机---
ZY-100 导轨金相切割机
研润金相试样磨抛机列表:
MPD-1 金相试样磨抛机---
MP-3A 金相试样磨抛机---
MP-2A 金相试样磨抛机---
MPD-2A 金相试样磨抛机---
MPD-2W 金相试样磨抛机
ZMP-1000 金相磨抛机---
ZMP-2000 金相磨抛机---
ZMP-3000 金相磨抛机---
ZMP-1000ZS 自动磨抛机---
BMP-1 半自动金相试样磨抛机
BMP-2 金相试样磨抛机---
MY-1 光谱砂带磨样机---
MY-2A 双盘砂带磨样机---
MPJ-35 金相试样磨平机---
P-1 单盘台式金相试样抛光机
P-2 金相试样抛光机---
LP-2 金相试样抛光机---
PG-2A 金相试样抛光机---
P-2T 金相试样抛光机---
PG-2C 双盘立式金相试样抛光机
P-2A 双盘柜式金相试样抛光机---
YM-1 单盘台式金相试样预磨机---
YM-2 双盘台式金相试样预磨机---
YM-2A 双盘台式金相试样预磨机
研润金相试样镶嵌机列表:
XQ-2B 金相试样镶嵌机---
ZXQ-2 金相试样镶嵌机---
AXQ-5 金相试样镶嵌机---
AXQ-50 金相试样镶嵌机---
AXQ-100金相试样镶嵌机
研润电子万能试验机列表:
YRST-D 数显电子拉力试验机---
YRST-M 数显电子拉力试验机---
YRST-M50 数显电子拉力试验机---
YRWT-D 微机控制电子万能试验机---
YRWT-M 微机电子万能试验机---
YRWT-M50 微机控制电子万能试验机---
YRWT-M100 微机电子万能试验机---
YRWT-M200 微机电子万能试验机---
LDW-5 微机电子拉力试验机---
WDS01-2D 数显电子万能试验机---
WDS10-100 数显电子万能试验机---
WDS10-300L 数显电子万能试验机---
WDW10-100 微机电子万能试验机---
WDW200-300 电子万能试验机
|
|