上海市高新技术企业 高新技术成果转化 上海市计量制造许可单位 CQC ISO9001:2008 质量管理体系 上海硬度计技术-上海硬度计制造商,洛氏硬度计,维氏硬度计,显微硬度计,布氏硬度计,自准直仪
关于我们      联系我们      常见问题      行业应用      下载中心      售后服务      网站地图      新闻中心      加入我们      硬度计价格     
上海研润光机科技有限公司
因勤奋而专业,   因年轻而创造
低价质高,   造型精美 ,  功能出色
研润”品牌仪器,   材料科学的生命力
研润”MRO直销中心,让您的产品更安全
洛氏硬度计 维氏硬度计 显微硬度计 布氏硬度计 金相切割机 金相磨抛机 金相镶嵌机 自准直仪
首页
公司简介
产品展示
硬度计
金相制样
试验机
准直仪
研润软件
联系我们
English
Japanese
金相显微镜
MMAS-4 金相显微镜分析系统(倒置偏光)
MMAS-5 金相显微镜分析系统(正置偏光)
MMAS-6 金相显微镜分析系统(正置透反)
MMAS-8 金相显微镜分析系统(正置透反)
MMAS-9 金相显微镜分析系统(正置偏光)
MMAS-12 金相显微镜分析系统(正置偏光)
MMAS-15 金相显微镜分析系统(无限远)
MMAS-16 金相显微镜分析系统(正置偏光)
MMAS-17 金相显微镜分析系统(正置透反)
MMAS-18 金相显微镜分析系统(无限远)
MMAS-19 金相显微镜分析系统(微分干涉)
MMAS-20 金相显微镜分析系统(倒置偏光)
MMAS-21 集成电路金相显微镜分析系统
MMAS-22 金相显微镜分析系统(明暗场)
MMAS-23 金相显微镜分析系统(微分干涉)
MMAS-24 金相显微镜分析系统(微分干涉)
MMAS-25 金相显微镜分析系统(微分干涉)
MMAS-26 金相显微镜分析系统(明暗场)
MMAS-27 金相显微镜分析系统(明暗场)
MMAS-28 金相显微镜分析系统(明暗场)
MMAS-29 金相显微镜分析系统(微分干涉)
MMAS-100 金相显微镜分析系统(正置)
MMAS-200 金相显微镜分析系统(正置)
4XI 单目倒置金相显微镜
4XB 双目倒置金相显微镜
4XC 三目倒置金相显微镜
5XB 双目倒置偏光金相显微镜
6XB 正置三目金相显微镜
6XD 正置双目偏光金相显微镜
7XB 大平台集成电路检测金相显微镜
8XB 大平台明暗场芯片检查金相显微镜
9XB 正置无限远偏光金相显微镜
10XB 正置无限远明暗场偏光金相显微镜
11XB 研究级透反射偏光暗场金相显微镜
102XB 工业正置明暗场偏光金相显微镜
4XC-ST 三目倒置金相显微镜
5XB-PC 电脑型倒置偏光金相显微镜
6XB-PC 电脑型正置金相显微镜
6XD-PC 电脑型正置偏光金相显微镜
7XB-PC 电脑型集成电路检测金相显微镜
8XB-PC 电脑型芯片检查金相显微镜
9XB-PC 电脑型正置偏光金相显微镜
10XB-PC 电脑型正置明暗场金相显微镜
11XB-PC 电脑型研究级DIC金相显微镜
102XB-PC 电脑型正置明暗场金相显微镜
AMM-8ST 三目倒置卧式金相显微镜
AMM-17 透反射金相显微镜
AMM-200 三目正置金相显微镜
JC-10 读数显微镜
BJ-X 便携式测量金相显微镜
HMM-200 便携式测量金相显微镜
HM-240 便携式金相显微镜
HMM-240 便携式测量金相显微镜
HMM-240S 便携式视频测量金相显微镜
体视显微镜
SM-2C 定倍体视显微镜(上光源)
SM-3C 定倍体视显微镜(双光源)
SM-4L 连续变倍体视显微镜
SM-5L 连续变倍体视显微镜(上光源)
SM-6L 连续变倍体视显微镜(双光源)
SM-7L 连续变倍体视显微镜(双光源)
SM-8L 连续变倍体视显微镜(上光源)
SM-9L 连续变倍体视显微镜
SM-10L 连续变倍体视显微镜(双光源)
SMAS-11 体视显微图像分析测量系统
SMAS-12 体视显微图像分析测量系统(单)
SMAS-13 体视显微图像分析测量系统(双)
SMAS-14 体视显微图像分析测量系统(双)
SMAS-15 体视显微图像分析测量系统(单)
SMAS-16 体视显微图像分析测量系统
SMAS-17 体视显微图像分析测量系统(双)
SMAS-18 体视显微图像分析测量系统
WPAS-19 焊接熔深立体显微分析系统
PXS 定倍体视显微镜
XYR 三目连续变倍体视显微镜
XTZ-03 连续变倍体视显微镜
XTZ-E 三目连续变倍体视显微镜
生物显微镜
BID-100 倒置相衬生物显微镜
BID-200 倒置相衬生物显微镜
BID-300 倒置无限远生物显微镜
BID-400 倒置偏光调制相衬生物显微镜
BID-500 倒置透射相衬生物显微镜
BID-600 倒置透射微分干涉相衬生物显微镜
BI-10 单目生物显微镜
BI-11 单目生物显微镜
BI-12 单目生物显微镜
BI-13 单目生物显微镜
BI-14 双目生物显微镜(偏光)
BI-15 双目生物显微镜(偏光)
BI-16 生物显微镜(相衬、无限远、示教)
BI-17 生物显微镜(相衬、无限远、示教)
BI-18 生物显微镜(相衬、无限远、示教)
BI-19 生物显微镜(相衬、无限远、示教)
BI-20 生物显微镜(相衬、无限远、示教)
BI-21 生物显微镜(相衬、无限远)
BI-22 生物显微镜(相衬、无限远)
BI-23 生物显微镜(相衬、无限远、暗场)
BI-24 生物显微镜(相衬、无限远、暗场
BI-25 生物显微镜(相衬、无限远)
BIAS-100 倒置相衬生物显微分析系统
BIAS-200 倒置相衬生物显微分析系统
BIAS-300 倒置无限远生物显微分析系统
BIAS-400 偏光调制相衬生物显微分析系统
BIAS-500 倒置透射相衬生物显微分析系统
BIAS-600 微分干涉生物显微分析系统
BIAS-714 正置生物显微分析系统
BIAS-715 正置生物显微分析系统
BIAS-716 正置生物显微分析系统
BIAS-717 正置生物显微分析系统
BIAS-718 正置生物显微分析系统
BIAS-719 正置生物显微分析系统
BIAS-720 大行程正置生物显微分析系统
BIAS-721 大行程正置生物显微分析系统
BIAS-722 大行程正置生物显微分析系统
BIAS-723 无限远光学生物显微分析系统
BIAS-724 超大平台生物显微分析系统
BIAS-725 无限远光学生物显微分析系统
XSD-100 三目倒置生物显微镜
37XD 三目倒置生物显微镜
XSP-8CA 三目正置生物显微镜
偏光显微镜/荧光显微镜
PM-10 简易偏光显微镜
PM-11 偏光显微镜(透、反射)
PM-12 偏光显微镜(透射)
PM-13 偏光显微镜(无限远)
PM-14 偏光显微镜(无限远、反射)
PBAS-20 偏光显微分析系统
PBAS-21 偏光显微分析系统
PBAS-22 偏光显微分析系统
PBAS-23 偏光显微分析系统
PBAS-24 偏光显微分析系统
PBAS-25 偏光显微分析系统
PBAS-26 偏光显微分析系统
PBAS-27 偏光显微分析系统
FM-100 荧光显微镜(倒置、四色)
FM-200 荧光显微镜(无限远、四色)
FM-300 荧光显微镜
FM-400 荧光显微镜(无限远)
FM-500 荧光显微镜(无限远)
FM-600 荧光显微镜(无限远)
FBAS-100 荧光显微分析系统
FBAS-200 荧光显微分析系统
FBAS-300 荧光显微分析系统
FBAS-400 荧光显微分析系统
FBAS-500 荧光显微分析系统
FBAS-600 荧光显微分析系统
其它显微镜(工具/比较/进口)
19JC 数字式万能工具显微镜
19JPC 微机式万能工具显微镜
19JPC-V 影像式万能工具显微镜
XZB-4C 比较显微镜
XZB-8F 比较显微镜
XZB-14 比较显微镜
进口显微镜
洛氏硬度计
HR-150A 洛氏硬度计
HR-150DT 电动洛氏硬度计
HRS-150 数显洛氏硬度计
HRS-150M 触摸屏洛氏硬度计
HRZ-150 智能触摸屏洛氏硬度计
HRZ-150S 智能触摸屏全洛氏硬度计
ZHR-150S 电脑洛氏硬度计
ZHR-150SS 电脑全洛氏硬度计
ZXHR-150S 电脑塑料洛氏硬度计
HRZ-45 智能触摸屏表面洛氏硬度计
ZHR-45S 电脑表面洛氏硬度计
HBRV-187.5 布洛维硬度计
HBRVS-187.5 智能数显布洛维硬度计
ZHBRVS-187.5 电脑布洛维硬度计
显微硬度计
HV-1000 显微硬度计
HV-1000Z 自动转塔显微硬度计
HVS-1000 数显显微硬度计
HVS-1000Z 数显自动转塔显微硬度计
HVS-1000M 触摸屏显微硬度计
HVS-1000MZ 触摸屏自动转塔显微硬度计
HMAS-D 显微硬度计测量分析系统
HMAS-DS 显微硬度计测量分析系统
HMAS-DSZ 显微硬度计测量分析系统
HMAS-DSM 显微硬度计测量分析系统
HMAS-DSMZ 显微硬度计测量分析系统
HMAS-CSZD 显微硬度计测量分析系统
HMAS-CSZA 显微硬度计测量分析系统
HMAS-ROLL 版辊显微硬度测量分析系统
维氏硬度计MC010系列
HV5-50 维氏硬度计
HV5-50Z 自动转塔维氏硬度计
HVS5-50M 触摸屏维氏硬度计
HVS5-50MZ 触摸屏自动转塔维氏硬度计
FV 研究型维氏硬度计
HMAS-D5 维氏硬度计测量分析系统
HMAS-D5Z 维氏硬度计测量分析系统
HMAS-D5SM 维氏硬度计测量分析系统
HMAS-D5SMZ 维氏硬度计测量分析系统
HMAS-C5SZA 维氏硬度计测量分析系统
HMAS-HT 高温维氏硬度计测控系统
HMAS-LT 超低温维氏硬度计测控系统
HV-5 5公斤力维氏硬度计
HV-10 10公斤力维氏硬度计
HV-20 20公斤力维氏硬度计
HV-30 30公斤力维氏硬度计
HV-50 50公斤力维氏硬度计
HVS-5 5公斤力数显维氏硬度计
HVS-10 10公斤力数显维氏硬度计
HVS-20 20公斤力数显维氏硬度计
HVS-30 30公斤力数显维氏硬度计
HVS-50 50公斤力数显维氏硬度计
HV-5Z 5公斤力自动转塔维氏硬度计
HV-10Z 10公斤力自动转塔维氏硬度计
HV-20Z 20公斤力自动转塔维氏硬度计
HV-30Z 30公斤力自动转塔维氏硬度计
HV-50Z 50公斤力自动转塔维氏硬度计
HVS-5Z 5公斤力数显转塔维氏硬度计
HVS-10Z 10公斤力数显转塔维氏硬度计
HVS-20Z 20公斤力数显转塔维氏硬度计
HVS-30Z 30公斤力数显转塔维氏硬度计
HVS-50Z 50公斤力数显转塔维氏硬度计
布氏硬度计MC010系列
HB-2 锤击式布氏硬度计
HBE-3000A 电子布氏硬度计
HBE-3000C 数显布氏硬度计
HBS-3000 数显布氏硬度计
HBS-3000L 触摸屏布氏硬度计
HMAS-DHB 布氏硬度计测量分析系统
HMAS-DHBL 布氏硬度计测量分析系统
HMAS-HB 便携式布氏硬度测量分析系统
HBM-2017A 数显异形布氏硬度计
邵氏硬度计/巴氏硬度计MC010系列
934-1 巴氏硬度计
LX-A/D/C 邵氏橡胶硬度计
LXS-A/D/C 数显邵氏硬度计
HLX-A/C 邵氏硬度计支架
HLX-D 邵氏硬度计支架
HLXS-A/C 数显邵氏硬度计支架
HLXS-D 数显邵氏硬度计支架
进口硬度计
MIC10 超声波硬度计
MIC20 组合式超声波硬度计
TIV 便携式光学硬度计
TKM-459 超声波硬度计
DynaMIC 回弹硬度监测仪
DynaPOCKET 动态回弹硬度计
硬度计耗材/配件MC010系列
自准直仪/平面度检查仪MC030系列
1401(1X5) 双向自准直仪(6-10米)
1401-15/20 双向自准直仪(15-20米)
S1401 数显双向自准直仪(6-10米)
S1401-15 数显双向自准直仪(15-20米)
YR-1S 数显自准直仪(30米,1秒)
YR-0.1S 数显自准直仪(30米,0.1秒)
YR1000U-3050 光电自准直仪(25/10米)
YR25PC02 光电自准直仪(25米,0.2角秒)
YR25TL02 光电自准直仪(25米,0.2角秒)
YR25D10 电子自准直仪(25米,1.0角秒)
YR20TL05 光电自准直仪(20米,0.5角秒)
YR20W10 远程自准直仪(20米,1.0角秒)
YR10PC01 光电自准直仪(10米,0.1角秒)
YR10TL01 光电自准直仪(10米,0.1角秒)
YR2038 电子自准直仪(10米,1角秒)
YR10TL03 光电自准直仪(10米,0.3角秒)
YR10W06 远程自准直仪(10米,0.6角秒)
YR05TL02 光电自准直仪(5米,0.2角秒)
YR04TL001 光电自准直仪(4米,0.01角秒)
YR05GMS 电子比较测角仪
YR0515GMM 小型电子比较测角仪
YROP10 电子式光学平行差测量仪
YR8-36 金属多面棱体
YR140-205 多齿分度台
YR-001D 自准直仪多轴位移工作台
YR-01X 自准直仪旋转位移工作台
YR-SL 自准直仪升降工作台
YR-5L 自准直仪光学五棱镜
金相切割机MC004系列
QG-1 金相试样切割机
Q-2 金相试样切割机
QG-2 岩相切割机
Q-3A 金相试样切割机
Q-4A 金相试样切割机
QG-5A 金相试样切割机
QG-100 金相试样切割机
QG-100Z 自动金相试样切割机
QG-300 三轴金相试样切割机
ZQ-40 无级双室自动金相试样切割机
ZQ-50 自动精密金相试样切割机
ZQ-100/A/C 自动金相试样切割机
ZQ-150F 无级三轴自动金相试样切割机
ZQ-200/A 无级三轴金相试样切割机
ZQ-300F 无级三轴自动金相试样切割机
ZQ-300Z 自动金相试样切割机
QG-500 大型液压伺服金相试样切割机
ZY-100 导轨金相试样切割机
SYJ-150 低速金刚石切割机
SYJ-160 低速金刚石切割机
金相磨抛机MC004系列
MPD-1 金相试样磨抛机(单盘无级)
MPD-2 金相试样磨抛机(双盘四档单控)
MP-3A 金相试样磨抛机(三盘三控无级)
MP-2A 金相试样磨抛机(双盘双控无级)
MPD-2A 金相试样磨抛机(双盘双控无级)
MPD-2W 金相试样磨抛机(双盘单控无级)
ZMP-1000 金相试样磨抛机(单盘8试样智能)
ZMP-2000 金相试样磨抛机(双盘8试样智能)
ZMP-3000 金相试样磨抛机(智能闭环系统)
ZMP-1000ZS 智能薄片自动磨抛机
BMP-1 半自动金相试样磨抛机
BMP-2 半自动金相试样磨抛机
MY-1 光谱砂带磨样机
MY-2A 双盘砂带磨样机
MPJ-35 柜式金相试样磨平机
P-1 单盘台式金相试样抛光机
P-2 双盘台式金相试样抛光机
LP-2 双盘立式金相试样抛光机
PG-2A 双盘柜式金相试样抛光机
P-2T 双盘台式金相试样抛光机
PG-2C 双盘立式金相试样抛光机
P-2A 双盘柜式金相试样抛光机
YM-1 单盘台式金相试样预磨机
YM-2 双盘台式金相试样预磨机
YM-2A 双盘台式金相试样预磨机
研磨抛光敷料
进口研磨抛光机
金相镶嵌机MC004系列
XQ-2B 金相试样镶嵌机(手动)
ZXQ-2 金相试样镶嵌机(自动)
AXQ-5 金相试样镶嵌机(自动)
AXQ-50 金相试样镶嵌机(智能,一体机)
AXQ-100金相试样镶嵌机(智能,一体机,双室)
冷镶嵌
进口液压热镶嵌机
进口液压热镶嵌机
进口液压自动热镶嵌机(可矩形)
进口立式热镶嵌系统
清洁度检测分析系统
材料气泡测量分析系统
电子万能试验机MC009系列
YRST-D 数显电子拉力试验机(1-5KN)
YRST-M 数显电子拉力试验机(10、20KN)
YRST-M50 数显电子拉力试验机(50KN)
YRWT-D 微机控制电子万能试验机(1-5KN)
YRWT-M 微机电子万能试验机(10、20KN)
YRWT-M50 微机控制电子万能试验机(50KN)
YRWT-M100 微机电子万能试验机(100KN)
YRWT-M200 微机电子万能试验机(200KN)
LDW-5 微机电子拉力试验机(0.05-5吨)
WDS01-2D 数显电子万能试验机(0.1-2吨)
WDS10-100 数显电子万能试验机(1-10吨)
WDS10-300L 数显电子万能试验机(1-30吨)
WDW10-100 微机电子万能试验机(1-10吨)
WDW200-300 电子万能试验机(20-30吨)
AGS-X25 岛津电子万能试验机(2-5吨)
AGS-X13 岛津电子万能试验机(10-30吨)
5942 Instron电子万能材料试验机(2mN-2kN)
5940 Instron电子万能材料试验机(0.5-2kN)
3300 Instron电子万能材料试验机(0.5-5kN)
5980 Instron电子万能材料试验机(10-60kN)
5960 Instron电子万能材料试验机(5-50kN)
3360 Instron电子万能材料试验机(5-50kN)
3380 Instron电子万能材料试验机(100kN)
ZWIK250 Zwick万能材料试验机(5-250kN)
ZWIK5 Zwick万能材料试验机(0.5-5kN)
液压万能试验机MC009系列
WES100-300B 数显液压万能试验机
WES600-1000D 数显液压万能试验机
WEW300-600B 电脑液压万能试验机
WEW600-1000D 电脑液压万能试验机
WAW100-1000B 电液伺服万能试验机
WAW600-1000D 电液伺服万能试验机
WES-100B 10吨数显液压式万能试验机
WES-300B 30吨数显液压式万能试验机
WES-600B 60吨数显液压式万能试验机
WES-600D 60吨数显液压式万能试验机
WES-1000D 100吨数显液压式万能试验机
WEW-100B 微机屏显液压式万能试验机
WEW-300B 微机屏显液压式万能试验机
WEW-600B 微机屏显液压式万能试验机
WEW-1000B 微机屏显液压式万能试验机
WEW-600D 微机屏显液压式万能试验机
WEW-1000D 微机屏显液压式万能试验机
WAW-100B 微机控制电液伺服万能试验机
WAW-300B 微机控制电液伺服万能试验机
WAW-600B 微机控制电液伺服万能试验机
WAW-1000B 微机控制电液伺服万能试验机
WAW-600D 微机控制电液伺服万能试验机
WAW-1000D 微机控制电液伺服万能试验机
冲击试验机MC009系列
YR-1530 手动冲击试验机(300J)
YR-B 半自动冲击试验机(300、500J)
YRS-B 数显半自动冲击试验机(300、500J)
YRW-B 微机半自动冲击试验机(300、500J)
YR-Z 全自动冲击试验机(300、500J)
YRS-Z 数显全自动冲击试验机(300、500J)
YRW-Z 微机全自动冲击试验机(300、500J)
CDW-40 冲击试验低温槽
CDW-60 冲击试验低温槽
CDW-80 冲击试验低温槽
CSL-A 冲击试样缺口手动拉床
CSL-B 冲击试样缺口电动拉床
JB-300B/500B 半自动冲击试验机
JBS-300B/500B 数显半自动冲击试验机
JBS-300Z/500Z 数显自动冲击试验机
JBW-300B/500B 电脑型冲击试验机
JBW-300Z/500Z 电脑自动冲击试验机
CST-50 冲击试样缺口投影仪
CSL-1 冲击试样缺口手动拉床
CZL-Y 冲击试样缺口液压拉床
光谱仪
元素分析仪/碳硫分析仪
色谱仪
光度计
影像测量仪
投影仪
三坐标测量机
轮廓仪
圆度仪
探伤仪
粗糙度仪
测高仪
测厚仪
测温仪
测振仪
石油化工仪器
气体检测仪
食品仪器
人工智能设备
4008127833/021-58391850
扫一扫关注我们
 
科普 | 疲劳强度的影响因素
本站文字和内容版权为上海研润光学显微镜硬度计制造厂所有http://www.yrmade.com;转载请注明出处
通常我们通过手册所获得的S-N曲线大多是无缺口的标准试样的试验结果。但是实际零部件的形状、尺寸、表面状态、工作环境和工作载荷的特点都可能大不相同,而这些因素都对零部件的疲劳强度产生很大的影响。疲劳强度的影响因素可分为力学、冶金学和环境三个方面。这些因素互相联系影响,使得在疲劳强度设计和疲劳寿命预测时,综合评价这些因素影响变得复杂。三类因素中,力学因素从根本上讲可归结为应力集中和平均应力的影响;冶金学因素可归纳为冶金质量即材料的纯净度和材料的强度;而环境因素主要有腐蚀介质和高温的影响。对于铁路车辆零部件大多数的情况是在大气和常温环境下工作的,所以一般情况下应主要考虑力学和冶金学两类因素。它们包括缺口形状的影响、尺寸的影响、表面状态的影响和平均应力的影响等。关于这些因素对疲劳极限影响的具体数据相关的经验公式,可查阅有关手册和资料。这里主要讨论疲劳强度设计和疲劳寿命预测时需要了解的一些比较重要的影响规律或现象,以及必须或应该考虑到的注意事项。一、缺口形状效应零件或构件常常带有如轴肩类的台阶、螺栓孔和油孔、键槽等所谓的缺口,它们的共同特点是零件的横截面积在缺口处发生了突变,而在这些缺口根部应力会急剧升高,这种现象叫做应力集中。缺口处的应力集中是造成零部件疲劳强度大幅度下降的最主要的因素。应力集中使得缺口根部的实际应力远大于名义应力,使该处产生疲劳裂纹,最终导致零件失效或破坏。应力集中的程度用应力集中系数(又称理论应力集中系数)Kt来描述,表达式如下。这里,σmax为最大应力,σ0为载荷除以缺口处净截面积所的得平均应力,又称名义应力。在一定范围内,缺口根部的曲率半径ρ越小,应力集中程度越大,疲劳强度降低的程度也就越大。但是,对于低中碳钢等塑性材料,当缺口根部的曲率半径进一步减小甚至小于零点几个毫米时,疲劳强度的降低程度会变的越来越小甚至不再降低。此时应力集中系数就无法真实地反映缺口对疲劳强度的影响。因此常用疲劳缺口系数Kf(fatigue notch factor,过去又被称为有效应力集中系数)来更直接地反映疲劳强度的真实的降低程度。这里,σw0,σw分别为无缺口光滑试样和缺口试样的疲劳极限。图14-4为钢的应力集中系数Kt与疲劳缺口系数Kf之间的关系。由图可见,对于低中碳钢,在应力集中系数小于2~2.5时Kt与Kf基本相同,但当超过此数值时,Kf的增长速度明显变慢。而对于高碳钢等强度比较高的钢,Kf随Kt线性递增的关系保持很长的范围。由此可知,高强度钢的疲劳强度对缺口的敏感性高而低中强度钢的疲劳强度对缺口的敏感性较低。一般情况下,Kf<Kt,但对于高碳钢尖锐缺口,还有可能存在Kt>Kf的现象。对于螺栓类零件也存在这种现象,有时出现Kt为约4左右而Kf为8~10的情况。这主要是因为每个螺纹所分担的载荷不均甚至载荷几种在某扣螺纹上所致。对于光滑材料,通过表面淬火、表面渗碳、表面氮化等表面热处理可以有效地提高其疲劳强度。但是对于缺口材料,这些方法可能变的没有效果甚至使疲劳强度反而降低。这是因为通过热处理使其表面强度提高的同时,使缺口敏感性也变高的缘故。图14-5为高强度钢和塑性较好的低强度钢的缺口材料的疲劳强度随应力集中程度的增加而变化的情况。在应力集中Kt较小的范围内,高强度钢的疲劳强度明显比低强度钢的高。但随着应力集中系数的增加,高强度钢的疲劳强度的降低速度明显大于低强度钢者,以致于高强度钢的疲劳强度与低强度钢的疲劳强度相差无几。对于焊接构件,由于焊接热影响区在许多情况下恰好处于结构性缺口部位或在其附近,加之焊接缺陷、焊接残余拉应力的作用等,使得疲劳强度可能大幅下降几倍甚至十几倍。疲劳缺口系数还受零部件尺寸大小的影响,一般地在具有相同缺口的情况下,随着尺寸的增大其疲劳缺口系数也有所增大。因此对于缺口材料或带有缺口的零部件,为了提高其疲劳寿命,最有效的方法是合理地进行结构设计和工艺选择等手段来设法降低或改进它的应力集中情况。而一味地选用高强度钢材,未必能够达到目的,相反在表面较粗糙和尺寸较大的情况下有可能反而使构件的疲劳强度下降。二、零件尺寸效应用于疲劳试验的式样的直径一般都在5~10mm的范围内,这和实际零部件的尺寸有很大的差异。一般地,对于弯曲和扭转载荷下的零件,随着尺寸的增大疲劳强度降低。但是对于轴向拉伸和压缩载荷的情况,尺寸大小的影响不大。尺寸对疲劳极限影响的大小用尺寸影响系数ε来表示。这里,σd,σd0分别为任意尺寸和标准尺寸光滑试样的疲劳极限。高强度钢的尺寸效应比低强度钢的尺寸效应大,表面粗糙的零件的尺寸效应较大。尺寸效应的产生主要是因为较大尺寸的材料的组织状态和应力梯度对疲劳强度产生了影响。材料的尺寸越大制造工艺过程越难控制,材料组织的致密性和均匀性等越差、冶金缺陷越多,表面积越大这些缺陷的数量也越多,因此大尺寸试样表面产生疲劳、裂纹的机会也就越大。而这些从根本上来说又都可以归结为冶金缺陷造成了局部应力集中而导致了疲劳裂纹的产生。关于应力梯度的影响,在承受弯曲、扭转等载荷的情况下,零件的尺寸越大工作应力的梯度越小,单位面积内的平均应力就越高,疲劳裂纹越易产生。三、表面状况的影响表面状况包括表面粗糙度、表面应力状态、表面塑性变形程度和表面缺陷等因素。在试验中采用的是表面磨光(或抛光)的标准试样,但实际的零部件的表面则往往是机械加工表面锻造表面和铸造表面。机械加工会在零件表面产生塑性加工硬化。切削加工往往会在零件表面产生一定的残余压应力,这对疲劳强度是有利的但效果有限。但是在磨削时往往会产生对疲劳强度不利的残余拉应力。另一方面,机械加工表面的显微尺度上的凸凹不平引会起应力集中而使疲劳强度降低。这些因素综合作用的结果,使疲劳强度比标准试样的要降低一些。而锻造或铸造表面一般具有更高的表面粗糙度,且部存在表面加工硬化层和表面残余压应力,因此会更加明显地降低疲劳强度。因此从形式上看,越是粗糙的表面加工方法,对疲劳强度的降低影响就越大。表面加工状况对疲劳强度的影响用表面加工系数β来表示。这里,σβ为某种表面状态下标准光滑试样的疲劳极限,σβ0为磨光标准光滑试样的疲劳极限,国外为表面磨光的标准光滑试样。从冶金角度看,粗加工对高强度材料的疲劳强度的影响更大,以至于在粗加工状态下高强度钢可能起不到丝毫的提高疲劳强度的作用。这主要是因为高强度材料对粗糙表面的缺口敏感性高的缘故,加之机械加工对于高强度钢的表面的加工硬化作用也很小。关于表面脱碳、表面碰磕伤痕和划伤等表面缺陷等对疲劳强度的影响的研究较少,但这些偶然原因造成的表面缺陷会对疲劳强度造成很大的影响。因此,在设计尤其是制造过程中需要给予足够的重视。对于光滑材料,表面热处理等表面改性方法可以提高疲劳强度,但对于实际零部件等带有缺口的材料,这些方法都效果不大,甚至产生相反的作用。因此多用喷丸、辊压的方法使表面产生加工硬化和残余压应力,从而提高构件的疲劳强度,但是这两种方法一般对孔口类缺口的零件的疲劳强度的提高作用并不明显。最新的研究表明,用简单的金属模具对孔口边缘进行少量倒角从而使缺口部位残生局部塑性变形的方法,对疲劳强度有明显的提高,甚至可以完全消除缺口降低疲劳极限的影响。过去大多认为,表面塑性加工的方法提高疲劳强度的主要原因是在表面产生了残余压应力从而抵消了部分工作应力的缘故。实际上是残余压应力在缺口部位产生的压缩集中应力抵消了缺口的不利影响;塑性变形使得缺口附近组织中的微小薄弱区域得到强化,使组织性能变的更加均匀一致,整体强度得到提高,从而使产生疲劳裂纹的应力水平得到提高。同时,残余压应力还使疲劳裂纹扩展停止而成为停留裂纹。四、平均应力的影响 如前所述,产生疲劳破坏的根本原因是动应力分量,但静应力分量即平均应力对疲劳极限也有一定的影响。在一定的静应力范围内,压缩的静应力提高疲劳极限,拉伸的静应力降低疲劳极限。一般认为,残余应力对疲劳极限的作用同平均应力的作用相同。对一种材料, 可根据它在各种平均应力或应力比R下的疲劳极限结果画出疲劳极限图。图14-6的横坐标为平均应力σm(或残余应力)和强度极限σb的比值,纵坐标为应力幅σa和对称循环疲劳极限σ-1的比值,两者都是无量纲的量。从图中可以看出,多数试验数据点落在直线与曲线之间。这条直线称为古德曼(Goodman)线,见式(14-13);曲线就是杰柏(Gerber)抛物线,见式(14-14);用屈服极限σs代替σb得到索德柏格(Soderberg)线,见式(14-15);用断裂真应力σf代替σb,得到摩儒(Morrow)线,见式(14-16)。古德曼(Goodman)线对于延性金属略偏保守且简单方便,在疲劳设计中应用最广。常用的还有另一种叫做理想的改进Goodman图。图14-7为工字形型钢对接梁弯曲疲劳载荷下理想的改进Goodman图。横坐标表示最小应力σmin,纵坐标表示最大应力σmax,其直线方程式为式中,m是Goodman线的斜率,b为直线在y轴上的截距,它是最小应力等于零时即脉动循环的疲劳极限。疲劳极限用最大应力表示时,即σw=σmax,考虑到应力比R=σmax/σmin,由式(14-6)有由式(14-18)即可求出应力比为R时的疲劳极限。实际车辆的具体结构要远比获得S-N曲线时的试验条件复杂,例如焊接形式及应力集中等等,美国AAR标准为我们提供了许多典型焊接结构疲劳强度方面的有价值的参考,所以,实际计算中的b与m均取自于AAR标准。试验研究表明,静载分量对应力集中系数、尺寸系数、表面系数的影响较小,可以忽略。来源:ASME, 材料科学与工程— END—

 


 
合作站点:http://www.am17.net/
合作站点:http://www.am17.cn/
合作站点:http://www.yr1718.com.cn/
合作站点:http://www.cnnoet.net/
 
 
研润金相显微镜列表:
4XB 双目倒置金相显微镜--- 4XC-ST 三目倒置金相显微镜--- AMM-8ST 三目倒置卧式金相显微镜--- AMM-17 透反射金相显微镜--- AMM-200 三目正置金相显微镜--- MMAS-4 金相显微测量分析系统--- MMAS-8 金相显微测量分析系统--- MMAS-5 金相显微测量分析系统--- MMAS-6 金相显微测量分析系统--- MMAS-9 金相显微测量分析系统--- MMAS-12 金相显微测量分析系统--- MMAS-15 金相显微测量分析系统--- MMAS-16 金相显微测量分析系统--- MMAS-17 金相显微测量分析系统--- MMAS-18 金相显微测量分析系统--- MMAS-19 金相显微测量分析系统--- MMAS-20 金相显微测量分析系统--- MMAS-100 金相显微测量分析系统--- MMAS-200 金相显微测量分析系统
研润硬度计列表:
HR-150A 洛氏硬度计--- HR-150DT 电动洛氏硬度计--- HRS-150 数显洛氏硬度计--- HRS-150M 触摸屏洛氏硬度计
HRZ-150 智能触摸屏洛氏硬度计--- HRZ-150S 智能触摸屏全洛氏硬度计--- ZHR-150S 电脑洛氏硬度计--- ZHR-150SS 电脑全洛氏硬度计
ZXHR-150S 电脑塑料洛氏硬度计--- HRZ-45 智能触摸屏表面洛氏硬度计--- ZHR-45S 电脑表面洛氏硬度计--- HBRV-187.5 布洛维硬度计
HBRVS-187.5 智能数显布洛维硬度计--- ZHBRVS-187.5 电脑布洛维硬度计--- HV-1000 显微硬度计--- HV-1000Z 自动转塔显微硬度计
HVS-1000 数显显微硬度计--- HVS-1000Z 数显转塔显微硬度计--- HVS-1000M 数显显微硬度计--- HVS-1000MZ 数显转塔显微硬度计
HMAS-D 显微硬度测量分析系统--- HMAS-DS 显微硬度测量系统--- HMAS-DSZ 显微硬度分析系统--- HMAS-DSM 显微硬度测量分析系统
HMAS-DSMZ 显微硬度分析系统--- HMAS-CSZD 显微硬度测量系统--- HMAS-CSZA 显微硬度计测量分析系统--- HV5-50 维氏硬度计
HV5-50Z 自动转塔维氏硬度计--- HVS5-50M 触摸屏维氏硬度计--- HVS5-50MZ 触摸屏自动转塔维氏硬度计--- FV 研究型维氏硬度计
HMAS-D5 维氏硬度分析系统--- HMAS-D5Z 维氏硬度测量系统--- HMAS-D5SM 维氏硬度分析系统--- HMAS-D5SMZ 维氏硬度测量系统
HMAS-C5SZA 维氏硬度计测量分析系统--- HB-2 锤击式布氏硬度计--- HBE-3000A 电子布氏硬度计--- HBE-3000C 数显布氏硬度计
HBS-3000 数显布氏硬度计--- HBS-3000L 触摸屏布氏硬度计--- HMAS-DHB 布氏硬度测量系统--- HMAS-DHBL 布氏硬度计测量分析系统
HMAS-HB 便携式布氏硬度测量分析系统--- HBM-2017A 数显异形布氏硬度计
研润自准直仪产品列表:
1401双向自准直仪--- 1401-15/20 双向自准直仪(15-20米)--- S1401 数显双向自准直仪(6-10米)--- S1401-15 数显双向自准直仪(15-20米)
研润金相试样切割机产品列表:
QG-1 金相试样切割机--- Q-2 金相试样切割机--- QG-2 岩相切割机--- Q-3A 金相试样切割机--- Q-4A 金相试样切割机
QG-5A 金相试样切割机--- QG-100 金相试样切割机--- QG-100Z 自动金相试样切割机--- QG-300 三轴金相试样切割机
ZQ-40 无级双室自动金相切割机--- ZQ-50 自动金相切割机--- ZQ-100/A/C 自动金相试样切割机--- ZQ-150F 无级三轴自动金相试样切割机
ZQ-200/A 三轴金相切割机--- ZQ-300F 三轴自动金相切割机--- ZQ-300Z 金相切割机--- QG-500 伺服金相切割机--- ZY-100 导轨金相切割机
研润金相试样磨抛机列表:
MPD-1 金相试样磨抛机--- MP-3A 金相试样磨抛机--- MP-2A 金相试样磨抛机--- MPD-2A 金相试样磨抛机--- MPD-2W 金相试样磨抛机
ZMP-1000 金相磨抛机--- ZMP-2000 金相磨抛机--- ZMP-3000 金相磨抛机--- ZMP-1000ZS 自动磨抛机--- BMP-1 半自动金相试样磨抛机
BMP-2 金相试样磨抛机--- MY-1 光谱砂带磨样机--- MY-2A 双盘砂带磨样机--- MPJ-35 金相试样磨平机--- P-1 单盘台式金相试样抛光机
P-2 金相试样抛光机--- LP-2 金相试样抛光机--- PG-2A 金相试样抛光机--- P-2T 金相试样抛光机--- PG-2C 双盘立式金相试样抛光机
P-2A 双盘柜式金相试样抛光机--- YM-1 单盘台式金相试样预磨机--- YM-2 双盘台式金相试样预磨机--- YM-2A 双盘台式金相试样预磨机
研润金相试样镶嵌机列表:
XQ-2B 金相试样镶嵌机--- ZXQ-2 金相试样镶嵌机--- AXQ-5 金相试样镶嵌机--- AXQ-50 金相试样镶嵌机--- AXQ-100金相试样镶嵌机
研润电子万能试验机列表:
YRST-D 数显电子拉力试验机--- YRST-M 数显电子拉力试验机--- YRST-M50 数显电子拉力试验机--- YRWT-D 微机控制电子万能试验机--- YRWT-M 微机电子万能试验机--- YRWT-M50 微机控制电子万能试验机--- YRWT-M100 微机电子万能试验机--- YRWT-M200 微机电子万能试验机--- LDW-5 微机电子拉力试验机--- WDS01-2D 数显电子万能试验机--- WDS10-100 数显电子万能试验机--- WDS10-300L 数显电子万能试验机--- WDW10-100 微机电子万能试验机--- WDW200-300 电子万能试验机
打印本页
上海研润光机科技有限公司 版权所有   厂址:上海市南奉公路1478号   电话:4008127833/021-58391850   公司简介   常见问题   行业应用   下载中心   硬度计售后  
常用产品分类: 洛氏硬度计   显微硬度计   维氏硬度计   布氏硬度计   金相显微镜   自准直仪   金相切割机   金相磨抛机   金相镶嵌机   电子万能试验机   液压万能试验机  
热销产品: 数显洛氏硬度计    数显布氏硬度计    数显维氏硬度计    数显显微硬度计    自准直仪   金相显微镜    金相切割机   金相磨抛机    金相镶嵌机   电子万能试验机   
沪ICP备05061730号         百度    万网   Copyright 2005 - 2017   网站地图   硬度计技术   硬度计新闻   硬度计链接  

SitemapX  SitemapX  SitemapX  Xenu  Asitemap  Asitemap  Asitemap  Asitemap  Asitemap  Pagerank  Pagerank技术

在线客服
热线电话

微信公众号